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Abstract: In this paper we present a new algorithm for the conditional simulation of random fieids. This
algorithm uses Daubechies wavelets and is effective for both isotropic and anisotropic cases. The simulation is
carried out in a moving window, with the movement along a random path. The random process to be simulated is
assumed to be Gaussian and so non-Gaussian data need to be suitably transformed before the application of the
algorithm and back transformed at the conclusion of the algorithm. Wavelet and scaling coefficients are drawn
from a normal distribution with variance equal to the wavelet spectrum and scaling spectrum in such a way that
the relevant properties of the conditioning data in the window under consideration are reproduced. The simulated
values are obtained by application of the inverse discrete wavelet transform. Although Haar wavelets provide a
simpler implementation, the window is too small to capture spatial anisotropy. Therefore, it is only effective for
the isotropic case. In this algorithm we overcome the drawback of the Haar-based conditional simulation by using
the normal scores of the kriging estimates as the training image to capture the spatiai correlation.
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1. INTRODUCTION is more suitable than sine and cosine functions.
Wavelet analysis has been used in the non-
conditional simulation of random processes [Zeldin
and Spanos, 1995]. Exploiting the location-
independence of the wavelet spectruin of second
order stationary Gaussian processes, a conditional
simulation of isotropic random processes using
Haar wavelets was proposed by Tran et al. [2001].
This algorithm, denoted here as HAARSIM, worked
effectively for isotropic cases but failed to
adequately reproduce spatial anisotropy.

Geostatistical simulation algorithms are modelling
methods used to obtain realisations that reproduce
relevant properties of the original sample. Such
properties include variance, perceatiles, histogram
and spatial correlation. Simulation is a useful too!
for the modelling of spatial attributes that are
susceptible to extreme values such as precious metal
grades and pollution concentrations and in
applications that focus on short range attribute

variability, " .
The conditional simulation algorithm DR2ZSIM

introduced here uses Daubechies wavelets with
filters having fowr non-zero coefficients. The
simulation is carried out sequentially in a two-by-
two moving window where the associated wavelet
and scaling coefficients are simulated and the
aitribute values in the window are compuied via the
inverse discrete wavelet transform. In order to
capture the spatial correlation we use the normal
score transform of kriging estimates as pseudo
estimates  during our simuiation. For global
accuracy  assessment  we  iovestigate  the
reproduction of the sample histogram and the

Simulation methods are said to be conditional if
they honour the atribute values at the sampled
locations; examples include sequential (Gaussian
simufation [Deutsch and Joumnel, 1998} and
conditional spectral simulation {Yao, 1998].

In this paper we introduce a geostatistical
simulation algorithm that is based on wavelets.
Wavelet analysis has its origin in signal processing
and image reconstruction and compression. It has
also been used in some applications where the
phenomena have sharp edges, where a wavelet basis
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semivariogram model for two test data sets. The
results indicate that the algorithm works effectively
for both isotropic and anisotropic cases.

2. BACKGROUND

21 Daubechies Wavelets

Finitely supported wavelets [Kahane and Lemarie-
Ricusset, 19951 are families of well localised
functions, each member of which takes non-zero
values only on a small interval, and whose integral
aver its support is equal fo zero, In one dimension
these wavelets are the dilations and translations of a

mother wavelet w and are denoted by

van=2""yQ i-kyjkez @
Fach wavelet family has an associated family of
functions called scaling functions which are also the

translations and dilations of a function ¢ and are
defined by

050 =27770@271-1) )
Daubechies wavelets are orthogonal finitely
supported functions that are characterised by their
low pass and high pass filters. These filters have
finite length and the filter coefficients are
determined using the properties and resirictions of
multiresolution  analysis and  orthonormality
[Daubechies, 1992], The longer the length of their
filters, the smoother the Daubechies wavelet and
scaling functions become. In this paper we focus on
the four-coefficient Daubechies wavelets whose low
pass filter A and high pass filter g are defined by

Tabie 1. Values of Db2 low and high pass filters.

] hn) 2(n)

0 482962915145 -.129409522551
i 836516303738 -224143868041
2 22414386804 1 836316303738
3 -. 128409522551 - 482902813145

Daubechies wavelets have no explicit formulae. For
each value of 7, the associmted value of w(t) is
determined  using the cacede  algorithm
iDaubechies, 1992]. The wavelet and scaling auto-
correlation functions ¥{k)yand O(h) for the
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Draubechies wavelet and scaling functions also have
no closed forms and are obtained by numerical
integration from their definition:

Y(hy= [wwi+hd

=

&)

and

D) = [P0 + Ay @

In 2D the scaling function and ifs associated three
wavelet functions are defined via the tensor product
of the one dimensional scaling and wavelet
functions

o(x, v) = G(0P(y) )
' (xny) = Gl () (6)
w’ (xy) = w0e(y) D
W (x ) = w{Dw () (8)

2.2 The Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) is a fast
algorithm that transforms a set of discrete values
into different components called scaling and
wavelet coefficients in order to study these
components at appropriate scales or to reduce
computer storage. In the two-dimensional case, a
set of values located oun a regular grid of size N by
M is identified with the set of scaling coefficients at
level j=0, by{cy{n.m):1sasNlSms M}, The
discrete wavelet transform [Mallat, 1998] allows the
wavelet and scaling coefficients at ievel j+1 o be
expressed as linear combinations of the scaling
coefficients at level j. Each application of the
transform reduces the number of wavelet and
scaling coefficients to be stored by a factor of four.
The inverse discrete transform (IDWT) is the
operation used for the reconstruction of the scaling
coefficients at level j from the wavelet and scaling
coefficients at the coarser level j+1.

.3 Stochastic Wavelet Analysis

In the cases of interest here, only values at some
locations on the regular grid are known. We will
assume that the sample is representative of a
random variable with approximately standard
normal distribution. Moreover, we assume that the
underiying random variable is second order



stationary. Then both the wavelet and the scaling
coefficients are normally distributed with mean 0
and variance approximately equal to the wavelet
spectrum / scaling spectrum  given by the
mathematical expectation of the squares of the
wavelet / scaling coefficients respectively. In our

case, the wavelet spectrum ?7;(;.1::1,2,3 and

scaling spectrum 1 at level j=1 are independent of
location and are computed in terms of the wavelet /
scaling auto-correlation functions associated with
the level and the covariance model of the sample

according to

= T TCU b ¥y i,

—esy =g

9
and
T=1 1 C(hx,h),)(bi(hx)cbl(f:y)dhxdhy {(10)

respectively, where

W k) = @, ()T, (h,) (an
Yo, b)) =W (h @, (h) (12)
Wiy hy) = (A OF (h) (13)
Here
@, (1) = B(h/2) (14)
and
W (k) = W(h/2) (15)

{Nason and Silverman, 1997; Sachs et al., 2000 and
Tran et al., 20017 .

3 METHOD

Using DR2SIM the conditional simulation: is carried
out in a window of size 2 by 2 moving along a
random path that visits all locations in the study
area. For each window only one location is
simulated. The algorithm is a combination of
stochastic wavelet analysis and a variant of muit-
linear regression called kriging. Stochastic wavelet
analysis is used to simulate wavelet and scaling
coefficients; kriging estimates are applied as pseudo
estimates £or capturing the spatial correlation. The
conditional  simulation  algorithm  DB2SIM
comprises the following 6 steps.

Sep 1: Given a random sample which is
approximately normally distributed with mean 0
and variance | {if this condition is not met then the
sample needs to be transformed into normal score
space}, we obtain the covariance function C(h) from
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the semivariogram model via the expression glh)=
Ci6)-C(h) and compute the wavelet spectrum and
the scaling spectrum of the random variabie.

Step 2: Generate a random path visiting each grid
node once and only once.

Step 3: Move to the first grid node on the path,

Step 4: Construct a window of size 2 by 2: the
location t be simulated is the first unestimated
node found in the window according to row
ascending order. As the size of the window is small
the number of conditioning data within the window
is not large enough to capture spatial correlation.
Therefore, the normal scores of the associated
kriging estimates values are assigned to the three
remaining locations. These values are expressed as
linear combinations of 16 scaling and wavelet
coefficients within the window via the inverse
discrete wavelet transform.

Step §: Simulate scaling and wavelet coefficients
and compuie the simulated value using the inverse
discrete wavelet transform. Since there are three
equations in 16 unknowns, 13 coefficients are
simulated and the other 3 are calculated in terms of
the estimates and simulated coefficients. Since the
kriging estimates implicitly cary the spatial
correlation of the simulated process, the simuiated
wivelet/scaling  coefficients which  honour the
kriging estimates also implicitly capture this spatial
correlation. Having simulated the wavelet and
scaling coefficients, the simulated wvalue is
computed via the inverse discrete transform. The
normal scores of the kriging estimates are discarded
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Figure 1. A/ Mosaic plot of Berea: B and C/. Post
plot and summary statistics of Bereal28.




before the next location is simulated.
Step 6: Repeat steps 4 and 3 untl all focations are
simulated.

4. TEST DATA

We use two test data sets to assess the performance
of the algorithm with respect io global accuracy.

4.1 The Bereal2B Sampie

The Bereal28 sample consists of 128 values
randomly selected from a real, anisotropic
exhaustive data set Berea. The Bereq data set
contains 1600 measurements of air permeability on
a slab of Berea sandstone {Giordano et al, 1985]
with mean 53.53, variance 249.23, minimum 19.50
and maximum 111.50. A mosaic plot of the
exhaustive data set, a post piot of the sample and the
summary statistics of the sample are shown in
Figure 1. The standardised  experimental
semivariogram of the normal scores is modelled as
a combination of a nugget effect and one spherical
structure. The values of nugzet. sill and range of the
model in the directions of maximum (145° azimuth
125% and minimum continuity (55°, azimuth 35%
are 0.2, 0.4 and 10.0 and 0.2, 0.8, 10.0, respectively.
The values of nugget, sill and range of our spherical
model for the attribute values in the directions of
maximum and minimum continuity are 55.0, 0.0,
14,0 and 55.0, 170.0, 6.0, respectively.

4.2 The Trued7 Sample

The True97 data set comes from GSLIB [Deutsch
and Journel,1998] and consists of 97 values on a
pseudo-regular grid. It is a sample from the
synthetic exhaustive data set True which has two
variables, denoted as Primary and Secondary each
of which consists 2500 values on a 50 by 50 reguiar
grid. In this paper we are interested only in the
Primary variable which has characteristics similar
to those from a gold mineralisation, with mean 2.58,
variance 26.54, minimum .01 and maximum
102.70. A mosaic plot for True, a post plot for
True97 together with its summary statistics are
shown in Figure 2. A standardised spherical
semivariogram model for the mnormal score
transform of the sample has nugget 0.1, sill 0.9 and
range 10.0. Our spherical model for the attribute
values has nugget 3.68, sili 6.50 and range 10.00.
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Figure 2. A/, Mosaic plot of True; B and C/. Post
plot and summary statistics of Truef7.

5. DISCUSSION

In this section we discuss the precision of the
algorithm DB2SIM by looking at the globai
accuracy of 50 single simulated realisations
obtained for each data set. We aiso compare the
results with those obtained using HAARSIM, the
algorithm that is based on Haar wavelets without
any training image.

Global accuracy is measured by the reproduction of
the associated sample histogram and semivariogram
model. The reproduction of the sample histogram is
assessed via the mean absolute deviation (MAD)
between the quantiles of the sample and the
corresponding quantiles of a simulated realisation.
To compare the goodness of DB2SIM with
HAARSIM in the sense of histogram reproduction,
the MAD between 30 simulations obtained by the
two algorithms are computed using 20 histogram

"Table 2. Summary statistics for the MAD values.

DBR2SIM HAARSIM
Bereai28 | True97 | Bereal2B | True97
Min 1.2299 00762 03460 | 01822
{1 14614 {.0647 1.076G | 8.2385
Med 1.5848 0.1029 1.2935 0.3240
23 1.6480 .1103 1.5991 04177
Max 1.7818 0.1412 2.6983 (0.7300
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Figure 3. Mosaic plot of Bereasim36 obtained using DB2SIM and its associated summary statistics and
experimental semivariogram.
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Figure 4. Wosaic plot of Truesim36 obtained using DB2SIM and its associated summary statistics and
experimental semivariogram.

classes. Summary statistics for the MAD values are
listed in Table 2. Thess values indicate that the
deviation between the simulated histograms and the
associated sample histograms by the two algorithms
is insignificant. That means both algorithms
reproduce sample histograms, but for the highly
skewed True97, DB2SIM performs better.

Summary statistics of a typical simulated realisation
of Bereal?8, Bereasim3t, with MAD=0.76 iogether
with its mosaic  plot  and  experimental
semivariogram in the directions of maximum and
minimun spatial continnity are shown in Figure 3;
whereas summary statistics of a typical simulated
realisation of Trued7, Truesimi6 with MAD=0.12
together with its mosaic plot and experimental
sermivariogram are shown in Figure 4. The mosaic
plots in both figures show that the simulated
realisations capture all features of the associated
sample plots; and the summary statistics indicate
that the mean and variance of the corresponding
samples are reproduced.

White both HAARSIM and DB2SIM reproduce the
associated sample histograms, only DBZSIM
captures the spatial correlation of the anisotropic
data set. The oplots of the experimental
semivariogram  for  the single  simulations
Bereasim36 (in Fig. 30) and Truesim36 (in Fig. 4C)
and the plots of 50 simulated experimental
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semivariograms in comparison with the associated
maodels in Figure 35, indicate that the spatial
correlation is reproduced for both anisotropic and
isotropic cases using DB2SIM. In contrast, the
experimental semivariograms for 50 simulated
realisations of Berea/28 using HAARSIM in Figure
6 shows that spatial correlation in the direction of
maximum continuity is not captured,

8, CONCLUSION

While stochastic wavelet analysis has been used in
many statistical applications, the wavelet based
conditiona!l simulation algorithm has been the first
attempt to expleit the location-independence of the
wavelet spectrum and scaling spectrum in the
conditional simulation of spatial processes. To
condition the data, both HAARSIM and DBISIM
carry out the simulation in over-lapping windows of
size 2 by 2. For isotropic data sets, HAARSIM
reproduces the global statistics of the associated
sample. Nevertheless, for anisotropic cases it fails to
adequately capture the spatial correlation, On the
other hand, DB25IM works effectively for both
isotropic and anisotropic cases, but has (o make use
of a training image to do so. Experimenis with an
algorithm using a combination of Haar wavelets and
a training image indicate it is largely the training
imege that emables the reproduction of the spatial



anisotropy. However, due to the nature of the Haar
filters, the simuiated images using HAARSIM are
smoother than those obtained using DB2SIM. Owr
next aim is to implement a conditional simulation
algorithm using Daubechies wavelets with longer
filter length and investigate the impact of the filters
on the results.
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Figure 5, A &B/. Experimental
semivariograms for 50 simulated realisations
using DB2SIM of Bereal2§ at the maximum
and minimum spatial continuity; /. Isotropic
experimental semivariograms for 50 simulated

realisations using DB2ZSIM of Trued7.
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